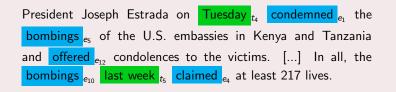
The importance of a semantics for semantic annotation: the temporal case

Philippe Muller Alpage Project-Team & IRIT INRIA & Toulouse University muller@irit.fr

ILIKS meeting Aix, June 2011 Joint work with Pascal Denis (Alpage), draws from papers at Coling 2010 and Ijcai 2011

- objective: temporal annotation of relations between events in texts
- consensual semantics in NLP: relations between time intervals
- importance of reasoning over (relational) representations
 - for human annotation: clear instructions
 - for predictions by system: control of coherence
 - for comparison/evaluation of human annotations, system predictions
 - for translating between different representation schemes
- here:
 - comparing different representations schemes wrt predictions
 - using reasoning to improve automatic prediction

Important task for language understanding consists in recovering "chronology" of temporal entities described in texts



Ordering : e_5 before e_1 , e_1 during t_4 , e_4 before e_1 , ... Relation types : time-time, event-time, event-event

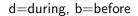
ISO specification: ISO-TimeML within ISO TC 37/SC 4 (TLINKS)

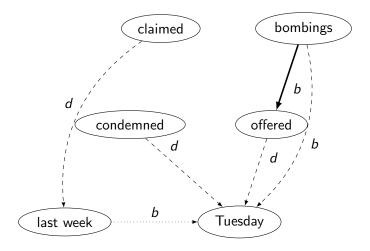
Importance of temporal reasoning

- Temporal relations have logical properties associated with them: e.g.,
 - $before(e_1, e_2) \models after(e_2, e_1)$ (symmetry of precedence)
 - before(e₁, e₂), before(e₂, e₃) ⊨ before(e₁, e₃) (transitivity of precedence)
 - before(e₁, e₂), during(e₃, e₂) ⊨ before(e₁, e₃) (transitivity of precedence + inclusion)
- These properties are important because:
 - They restrict the coherent graphs that can be built for a set of events: e.g., *before*(e₁, e₂), *during*(e₃, e₂), *after*(e₁, e₃)
 - They allow us to compare different descriptions of the same situation: before(e₁, e₂), during(e₃, e₂) ≡ before(e₁, e₂), during(e₃, e₂), before(e₁, e₃)

伺 ト イヨト イヨト

Temporal ordering: graph representation manual annotation

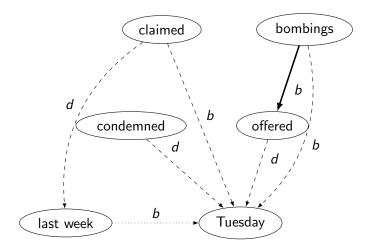




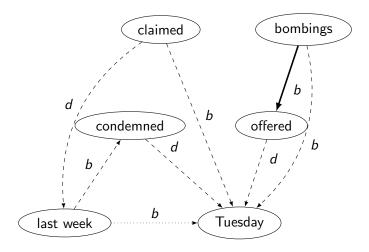
3

伺 ト く ヨ ト く ヨ ト

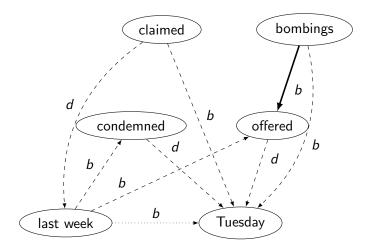
d=during, b=before



d=during, b=before

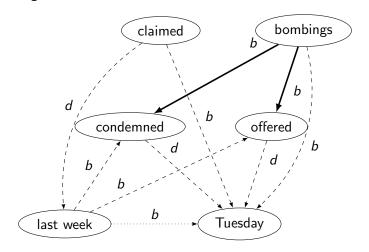


d=during, b=before



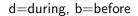
Temporal ordering: graph representation with inferences

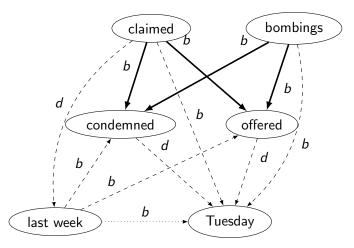
d=during, b=before



3 x 3

Temporal ordering: graph representation with inferences

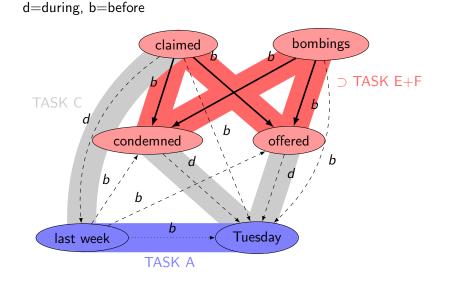




э

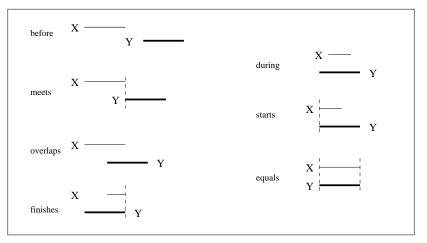
伺 ト く ヨ ト く ヨ ト

Temporal ordering: graph representation relations to Tempeval tasks



- all possible orderings between time intervals w.r.t. to endpoint ordering: Allen relations [Allen, 1983]
- ISO TimeML specification : almost the same, excludes partial overlaps (TimeBank)
- TempEval campaign: much vaguer relations, supposedly easier to annotate
- other choices are possible: e.g. endpoint, semi-intervals, Bruce's 7 relations
- balance between feasability, naturalness of annotation and power of representation ?
- \rightarrow separate annotation from reasoning
- \rightarrow necessity of conversions between levels of representations

Interval-interval relations



Allen's thirteen relations between two temporal intervals

э

(4) 同 (4) 日 (4) H (4) H

Correspondances

TimeML	Allen	Bruce	Tempeval	
BEFORE	before	before	before	
IBEFORE	meet	Deloie	DEIDIE	
(absent)	overlaps	overlaps		
STARTS	starts			
IS_INCLUDED	during	included	overlaps	
FINISHES	finishes			
(absent)	overlapsi	is-overlapped		
IS_STARTED	startsi			
INCLUDES	ES duringi in			
IS_FINISHED	finishesi			
IAFTER	meeti	after	after	
AFTER	beforei	aller	alter	
SIMULTANEOUS	equals	equals	equals	

A relation ranging over multiple cells is equivalent to a disjunction of all the relations within these cells.

□→ < □→</p>

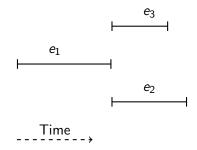
- semantic enrichment, eg for extraction, machine learning (deductions)
- comparison of different annotations (equivalences)
- control of coherence
- but: need to be computationally feasible
- $\bullet \rightarrow$ restricted forms of temporal reasoning: constraint languages, aka relational algebras

Algebras of relations

- a set of base relations, jointly exhaustive and mutually exclusive
- any relation between domain objects is a disjunction between base relations, considered as a set of relations
- any two relations can be composed to yield a new relation: before(e₁, e₂), during(e₃, e₂) → before(e₁, e₃) noted : before ∘ during = before
- in general, composition is disjunction of compositions between base relations
- $\bullet\,$ this defines an algebra on relations with operations $\cup,\cap,\circ\,$
- composition of relations is guaranteed to reach a fixed point
 - \rightarrow saturation used for comparison of two annotations
- \bullet or signal an inconsistency \rightarrow coherence control

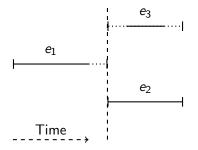
Allen, Bruce and Tempeval relations all define algebras

Importance of inferential power



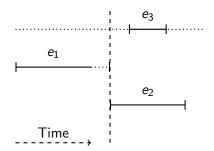
Allen: $(e_1 \text{ meet}_a e_2 \land e_3 \text{ starts}_a e_2) \rightarrow e_1 \text{ meet}_a e_3$

Importance of inferential power



Bruce: $(e_1 \text{ before}_b e_2 \land e_3 \text{ during}_b e_2) \rightarrow e_1 \text{ before}_b e_3$

Importance of inferential power



Tempeval: $(e_1 \text{ before}_t e_2 \land e_3 \text{ overlaps}_t e_2) \rightarrow e_1\{\text{before}_t, \text{overlaps}_t\}e_3$

Experiment 1: comparing algebras for learning Coling 2010

- how can temporal reasoning be best used to learn temporal orderings ?
- $\bullet \rightarrow$ compare the impact of using different temporal relation sets
- in particular, what is the best trade-off between:
 - how easy it is to learn a given relation set \approx number x generalizations captured
 - how much new information can be inferred by the representations produced by each relation set
 - = "inferential power"
 - how accurate and coherent are the predicted complete temporal orderings?

- Use OTC = TimeBank + ACQUAINT corpus
- Learn event-pair classifiers based on the different algebras (base relations only): Allen, Bruce, TempEval
- Evaluate algebra specific models on two tasks
 - classification task: event pairs annotated with a temporal relation
 - global" task of producing complete (i.e., closed) event-event graphs (coherence enforced)
- For each algebra in which we learn and predict, we can evaluate in all algebra that are vaguer

As most approaches:

only label event-pairs given by the gold annotation

Two types of greedy decoding:

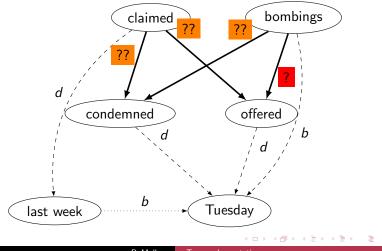
- G "argmax" decoding: pick relation with highest probability for each event pair (no coherence check)
- "natural reading order" decoding: pick most probable relation that preserves global coherence (this implies saturation after classification)

Types of evaluation

- Classification accuracy on annotated relations (no coherence check)
- Precision / Recall on closed graphs
 - "Strict" measures: only compare the sets of simple temporal relations
 - "Relaxed" measures: compare the overlaps of sets of relation disjunctions (universal disjunction everywhere get .33!)
 - inconsistent graphs intepreted as making no prediction (only recall is penalized)
 - predictions in one algebra can be converted and evaluated into any another one for relaxed measures

Input to the task

T-T and E-T relations given (easier tasks) gold annotation event-pairs event-pairs from saturated gold annotation graphs



target : gold annotation event-pairs

	Allen Temp	
Allen	47.0	48.9
Bruce	N/A	49.3
TempEval	N/A	54.0

- As expected, algebra-specific classifiers have the best accuracy when evaluated in their own algebra
- Best absolute accuracy performances are given by the vaguer TempEval-classifier

targets : saturated gold annotation graphs				
		Relaxed F1	Strict F1	
	Allen	51.5	52.7	
argmax	Bruce	42.1	25.9	
	Tempeval	36.5	21.2	
-	Allen	51.3	59.9	
NRO	Bruce	49.5	21.2	
	Tempeval	36.5	21.2	

- not very interesting for "strict" metrics: Bruce and Tempeval can only predict "equals"
- Allen-based system strongly outperforms the systems using models trained on vaguer algebras due to the largely under-specified representations these produce

targets : saturated gold annotation graphs					
		relaxed F1	strict F1		
	Allen	55.5	53.6		
argmax	Bruce	57.3	53.8		
	Tempeval	48.2	29.1		
	Allen	65.3	51.8		
NRO	Bruce	68.5	52.9		
	Tempeval	48.2	29.1		

- Allen- and Bruce-based systems significantly outperform TempEval system, on its evaluation home ground and even tough their classification accuracy was lower
- Bruce-based system performs best, providing the best trade-off between "learnability" and expressive power (not by much)

Experiment 2: predict coherent structures ljcai 2011

- goal: predict consistent temporal structures
- learn local relational model (classic)
- use reasoning during decoding to produce best globally coherent set of relations
 - classic: use Integer Linear Programming (ILP) translation to enforce coherence
 - new: use the full set of relations
- new: translates annotations as end point representations to make it computationally practical
- new: doing it without taking all the reference pairs as given
 - on reference self-connected temporal subgraphs
 - on heuristically determined meaningful subgraphs

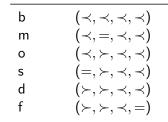
Using points instead of intervals

$$R \in Allen, r_i \in \{\prec, \succ, =\}$$
$$R(I_1, I_2) \equiv r_1(I_1^-, I_2^-) \land r_2(I_1^+, I_2^-) \land r_3(I_1^-, I_2^+) \land r_4(I_1^+, I_2^+)$$

Composition

0	\prec	\preceq	\succ	\succeq	=
\prec	\prec	\prec			\prec
\preceq	\prec	\preceq			\leq
\succ			\succ	\succ	\succ
\succeq			\succ	\succeq	\succeq
=	\prec	\preceq	\succ	\succeq	=

Conversion end-points/interval Allen order/endpoints



System	baseline zero	baseline before	nro	ilp
Recall	26.01	37.93	20.08	49.80

- TimeBank only (harder than OTC)
- strict evaluation
- zero = do nothing but assumes perfect E-T and T-T relations
- before = order events in order of text
- without coherence enforcement, local classifier yields 82% inconsistent graphs
- recall is (somewhat improperly) called accuracy in comparable studies

wrt	System	Precision	Recall	F1-score	Inco.
connected components	ilp nro before	33.02 49.98 6.22	54.07 17.02 37.93	41.00 25.40 10.69	5.93 0.00 0.00

NB

- local classifiers : 88% inconsistent graphs on connected components,
- tested also on heuristic subgraphs: not very good so far

- semantic annotations need precise semantics
- semantic annotations need a deduction model
- different schemas can co-exist but should be related within a formal representation framework
- deduction is good for you (for evaluation, comparison, prediction)

- enriched representations \rightarrow a lot of evaluation issues (cf joint work with Xavier Tannier, JAIR 2011)
- similar relational problems:
 - spatial relations, although inference seems less productive
 - discourse relations: although semantics constraints and equivalences not well established (work in progress in Alpage team: Charlotte Roze)
- integration within human annotation process ? (cf work of Mark Verhagen at Brandeis)

Pascal Denis and Philippe Muller.

Comparison of different algebras for inducing the temporal structure of texts.

In Proceedings of Coling 2010, pages 250-258, Beijing, 2010.

Pascal Denis and Philippe Muller.

Predicting globally-coherent temporal structures from texts via endpoint inference and graph decomposition.

In Proceedings of IJCAI 2011, pages xx-xx, 2011.

Xavier Tannier and Philippe Muller. Evaluating temporal graphs built from texts via transitive reduction.

Journal of Artificial Intelligence Research, (40):375–413, 2011.