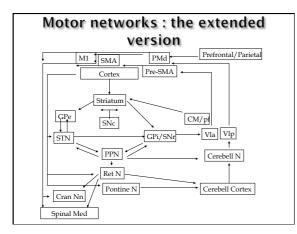
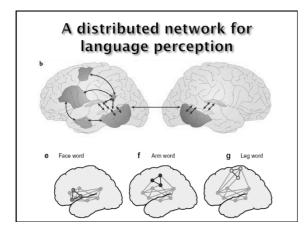

NEUROMODULATION FOR SPEECH AND LANGUAGE

Patrick Santens, MD, PhD Movement Disorder Unit Department of Neurology Gent University Hospital

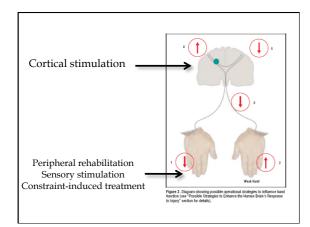

NEUROMODULATION

- Impact on neurophysiological functions
- Impact on clinical function of the nervous system
 - Pharmacological
 - Neurostimulation
 - Facilitated rehabilitation



Pharmacological effects on speech and language

- Dopaminergic effects on speech
 - Effects of dopaminergic treatment on speech characteristics in PD
 - Disfluencies induced by alterations of dopaminergic systems
- Dopaminergic effects on language
 - Neurophysiological studies
 - Dopamine agonists in the treatment of aphasia
- Manipulation of other neurotransmitter
 - systems : largely aspecific


Neurostimulation

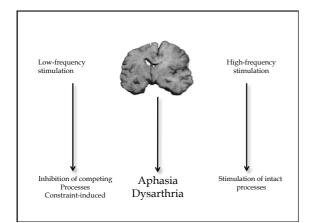
Cortical stimulation

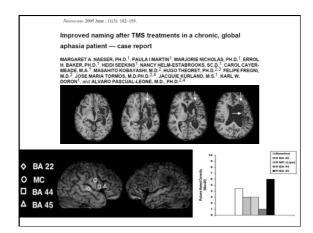
- Direct electrical stimulation (intraoperative)
- Transcranial magnetic stimulation
- Transcranial electric stimulation
- $\hfill\square$ Deep brain stimulation in movement disorders
 - High-frequency stimulation
 - Low-frequency stimulation
- Peripheral nerve stimulation
 - Vagal nerve stimulation
 - Limb nerve stimulation

Cortical stimulation : applications

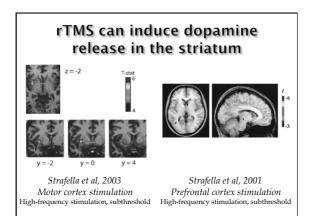
- Transcranial magnetic stimulation in the rehabilitation of language disorders
- Transcranial magnetic stimulation in parkinsonian disorders

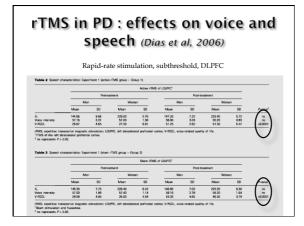
3


Repetitive transcranial magnetic stimulation



High-frequency stimulation : excitation Low-frequency stimulation : inhibition



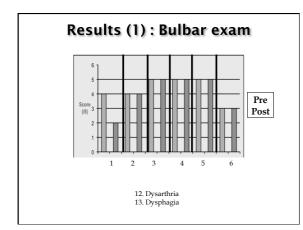


Repetitive transcranial magnetic stimulation in parkinsonism

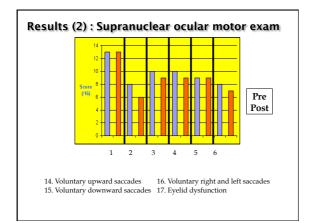
- Impaired inhibition in the cortex in PD
- rTMS can reverse the alterations in cortical excitability
- Outcome of clinical studies highly variable
 Stimulation frequency
 - Stimulation intensity
 - Localization of stimulation
 - Outcome parameters

rΤ	rTMS in PD : effects on voice and speech (Dias et al, 2006)										
Table 4 Speech o			te stimul	ation, sı	ıbthresho	old, M1	mouth a	rea			
			A	trive rTMS of th	e M1-mouth area	1					
			Women		Post-tre Men		Women				
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Prelier		
F ₀ Voice intensity	139.20 58.20	1.30 0.83	223.00 59.00	2.00 1.00	121.20 70.20	7.94 1.30	240.00 70.00	2.00 1.00	100.05× 100.05×		
rTMS, repetitive tra 'rTMS of the prima ² ns represents P >	y motor cortex (m	outh areal.							•		

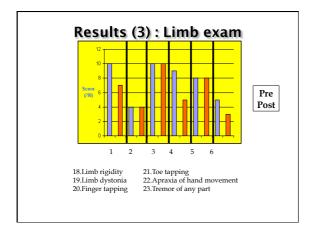
rTMS in patients with PSP P.Santens, A.Sieben, M.De Letter : rTMS in patients with PSP – a pilot study Acta Neurologica Belgica 2009; 109 : 200-204												
	Age	Dur Diagn	Gaze Palsv	Falls	Speech	Dysph	ENOG					
1 F	60Y	3Y	Yes	Yes	Yes	Yes	Yes					
2 M	77Y	2Y	Yes	Yes	Yes	Yes	Yes					
3 M	75Y	2Y	Yes	Yes	Yes	No	ND					
4 M	70Y	5Y	Yes	Yes	Yes	No	Yes					
5 M	66Y	2Y	Yes	Yes	Yes	Yes	Yes					
6 M	72Y	7Y	Yes	Yes	Yes	Yes	ND					

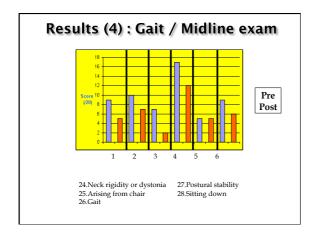

Repetitive TMS in PSP patients : Methodology

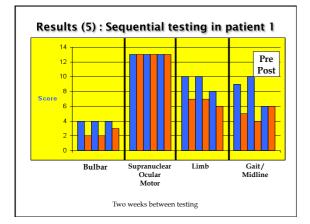
TMS methodology


- •Stimulation over motor cortex, using vertex coil •Detection of motor threshold in intrinsic foot muscle
- •Stimulation at 80% of threshold, 10 Hz
- •Stimulation for 5 sec, followed by 55 sec rest

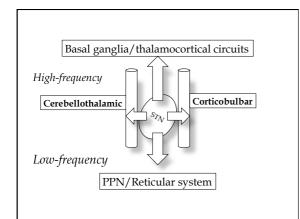
•20 cycles


- Five consecutive days
- Evaluation by means of dedicated PSP scoring system (*Golbe et al., 2007*)





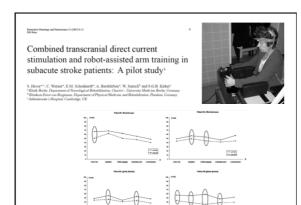
rTMS in PSP : conclusions


- Using this methodology : rapid-rate, subthreshold motor cortex stimulation
- Minor temporary improvements in some functions, especially midline functions
- Short-lived but consistent effects
- No consistent effects on speech and swallowing

Deep brain stimulation and speech in PD

- Effects of high-frequency subthalamic nucleus stimulation on speech in PD are variable and not consistent (Pinto et al, 2004)
- Differential effects on speech of parameter settings in DBS (Törnqvist et al, 2005), especially negative effects of higher frequencies and amplitudes
- Negative effects of left-sided stimulation (Santens et al, 2003)
- Increase of dysarthria is underreported in the literature on DBS of the STN

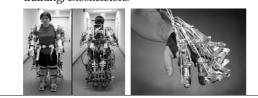
Prospects for speech and DBS

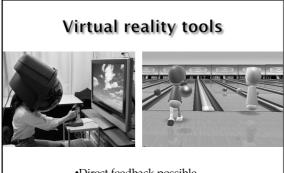

- Pedunculopontine nucleus stimulation ?
 - Low-frequency stimulation
 - Mainly effects on axial functions
 - Improvement of cognitive functions and grammatical performance (Alessandro et al, 2010)
- Low-frequency STN stimulation ?
 - Improvement of gait and axial functions (Moreau et al, 2008)
 - Preliminary experience suggests improved intelligibility in some patients.

Peripheral nerve stimulation

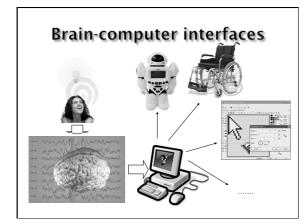
- Vagal nerve stimulation for epilepsy
 - Intermittent low-rate stimulation
 - Hoarseness
 - Mechanism of action ?
- Limb nerve stimulation and peripheral rehabilitation
 - Sensorimotor effects with secondary effects on language perception and production ?

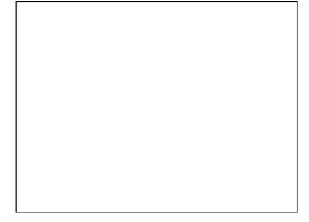
-- p.u


Rehabilitation facilitation



- Neurofeedback
- Virtual reality
- Brain-Computer interfaces


Signals for feedback


- Motor performance
- Speech output
- Neurophysiological signals : EEG, EP
- Assisted performance e.g. Robot-assisted training, exoskeletons

•Direct feedback possible •Psychosocial rehabilitation

Neuromodulation : prospects for speech and language ?

- Pharmacological : unclear
- Cortical stimulation:
 - Language rehabilitation : promising
 - Speech in PD : targeting to mouth area to be explored
- Deep brain stimulationPPN stimulation to be explored
 - Low-rate STN stimulation to be explored
- Feedback-related strategies to be explored

