

A new approach for an acousticphonetic description of dysarthria DesPho-APaDy project

L. Crevier-Buchman¹, C. Fougeron¹, C. Fredouille², A. Ghio³, C. Meunier³,
C. Delooze³, D. Duez³, C. Gendrot¹, T. Legou³, N. Lévêque¹, N. Audibert²,
A. Colazo Simon¹, C. Pillot-Loiseau¹, S. Pinto³, G. Pouchoulin², D. Robert³, F. Viallet³, C. Vincent¹, B. Teston³, C. Chevrie-Muller⁴

1 Lab. de Phonétique et Phonologie, UMR 7018 CNRS-Paris3/Sorbonne Nouvelle, Paris, France 2 University of Avignon, CERI/LIA, Avignon, France 3 Lab. Parole et Langage, UMR 6057 CNRS Aix-Marseille Univ., Aix-en-Provence, France 4 Lab. MoDyCo, UMR 7114, CNRS- Université Paris 10, Paris, France

A multidisciplinary team

Composed of phoneticians, clinicians, computer science engineers and automatic speech processing

3 partners with 27 participants :

- Laboratoire de Phonétique et Phonologie, Paris (UMR 7018)
- Laboratoire Parole et Langage, Aix en Provence (UMR 6057)

- Laboratoire d'Informatique d'Avignon, Avignon (UPRES 4128)

Rationale and Objectives of the Project

What do we want?

Identify and quantify reliable markers which are characteristic of different types of dysarthric speech profile, and could be followed in time.

- Severity evaluation
- Disease progression
- Treatment efficacy
- Select reliable and robust French acoustic phonetic criteria able to distinguish
- Normal and dysarthric speech
- Different dysarthria types

Rationale and Objectives of the Project

- Issues?
 - Which technique & nature of the markers?
 - Perceptual
 - Acoustic
 - Articulatory
 - Which speech dimension to focus on?
 - Presumed altered speech dimension
 - All dimensions
 - What resources are available?
 - Single vs. multiple judges (expert-naive)
 - Manual vs. automatic processing devices

Rationale and Objectives of the Project

Approaches

- Combine semi-automated procedures from tools developed for automatic speech processing or scripts used for acoustic measurements and
- Manual phonetic analysis at different level:
 - Temporal
 - Segmental
 - Suprasegmental
- Permanent back and forth between manual and automatic procedures
- Processing of a large amount of speech files
 - over 100 patients (SLA, Parkinson, Cerebellar)
 - with 1-2 min. of text reading per patient
- With minimal cost of time and human expertise

The Multiple-Field Query Database

The CCM (Claude Chevrie-Muller) Corpus recorded over 30 years (1965 – 1997)

- ~1000 hours of disordered speech, 5000 patients adults and children
- * 860 patients **classified** according to their **neurological diagnosis**
- * 60 control speakers

Data recorded

Sound, EGG (ElectroGlottoGraph)

The Multiple-Field Query Database:

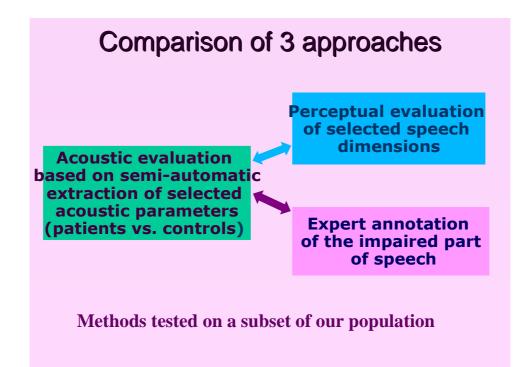
- The ANH (Aix-Neurology-Hospital)
- Corpus recorded for the past 15 years:
 - * 990 patients,
 - * 160 control speakers

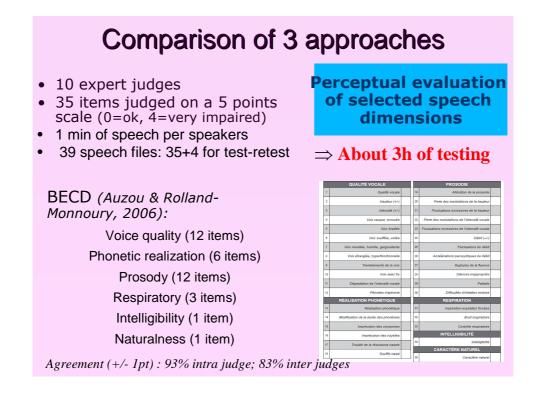
Data recorded

Sound, aerodynamic.

- Focus on neurophysiologic alterations of 3 neurologic systems:
 - Pyramidal system: ALS dysarthria (30 patients)
 - Cerebellar system: ataxic dysarthria (30 patients)
 - Extrapyramidal system: Parkinsonian dysarthria (30 patients from the ANH corpus)
- Selection based on:
 - Severity of the dysarthria (clinical information, the certainty of the diagnosis, the ongoing treatment, patient demographics)
 - The relatively intelligible speech

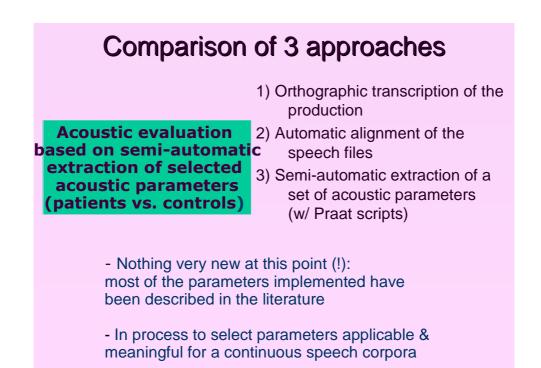
Type of Acoustic parameters Voice quality and fundamental frequency measurements to characterise laryngeal control *F0* (Hz) (mean+stdev) measured in the middle of vowels + F0 contours on selected sentences **Amplitude** measurements for respiration & laryngeal control Measurements related to nasalisation for velopharyngeal functions **Spectral** and durational correlates for vowels and consonants for kinematics of supralaryngeal articulatory movements and movement coordination *F1*, *F2*, *F3* (mean+stdev) measured at different points in the vowels

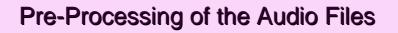

Type of Acoustic parameters


- Measurements linked to the temporal organisation at a suprasegmental level,
 - Speech rate (phoneme/sec) (mean+stdev)
 - Phoneme + pause duration (ms.) (mean+stdev)
- Measurements correlated with dysfluencies
 - False start
 - > Inappropriate pauses within phrases

For suprasegmental features

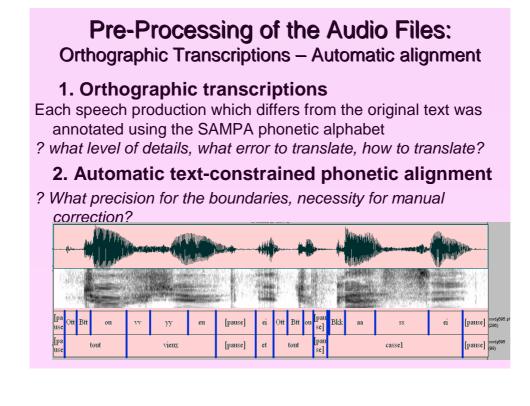
- \Rightarrow automatic tracking difficult to implement
- \Rightarrow ongoing studies to determine the best parameters


We intent to screen all the population with all the parameters



Comparison of 3 approaches

- 1 expert (speech pathologist)
- Evaluation of the speech files by ear and eyes very costly in time!
- Classification of the impaired productions:
 - Inappropriate pauses
 - Voicing/devoicing
 - Phonation problems for vowels
 - Nasalization/denasalization
 - Fortition of fricatives
 - Fricatization of stops
 - Other 'spectral' problems (diphtongs, ...)



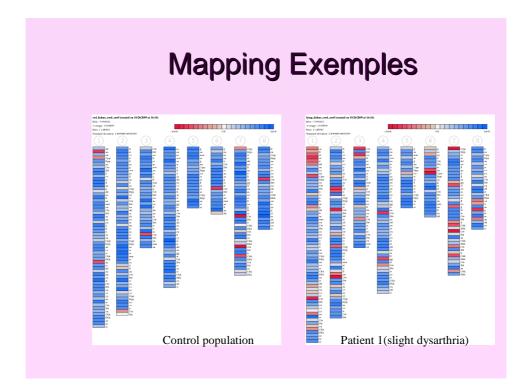
Expert annotation of the impaired part of speech

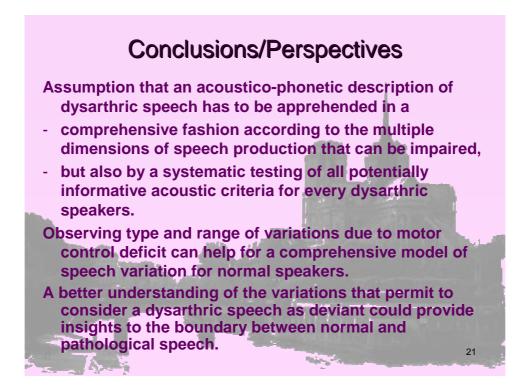
- In order to be able to perform both the manual and automatic acoustic analyses,
 - Need of:
 - Orthographic transcriptions
 - Automatic text-constrained phonetic alignment using the LIA tool box

15

Automatic Phonetic Alignment

When comparing segments produced manually and automatically...


disagreement rate = proportion of segments with midpoint shift over 20 ms (our reference value)


	Male	Female
Control speaker	14%	17%
Moderate dysarthria	21%	26%
Severe dysarthria	66%	52%

but strong agreement (manual/automatic) for spectral measurements (Formants frequencies...)

