OTIM project

Primary data:
Transcription, Phonetization, Alignment

Part 1

Robert Espesser

23 mai 2011, Aix-enProvence

- Corpus involved : CID
- Enriched Orthographic Transcription (TOE)
- " Phoneme alignment
- Evaluation of the alignment
- Descriptive data about phonetic (and non phonetic) phenomena (elision, overlap)

Conclusion

CID: Corpus of Interactional Data

(Bertrand & al, 2008)

- 8 dialogs, ~ 1 hour /dialog
- 1 channel /speaker (head-mounted microphone)
- recorded in a sound booth
- " speakers from southeastern France or long-term residents

Pre-segmentation of the speech signal

" Inter Pausal Unit segmentation (silent pause >= 200 ms)

~ 13000 IPUs

median: 1390 ms quartiles: 600, 2770 ms

Manual transcription (Praat)Enriched Orthographic Transcription (TOE)

Transcription Orthographique Enrichie (TOE): why?

- " Available speech tools designed for standard (read) French
- " Results on uncontrolled speech are likely to be unreliable
- Extent of the difference between the 2 styles is unknown.
- transcription of a maximum of information
- get data on the oral phenomena (frequency, patterns)
- " Improve the performance of the speech tools involved to get an acceptable phonem alignment.

TOE main conventions

Derived from the works of GARS (Blanche-Benveniste, 1987)

```
il est @ parti loin
Laugh
Laughing speech
                     il est @@ parti loin @@
Elision
                      p(e)tit
                                               /pti/
Truncated word s- c'est non
                                               /s se no~/
                                               /lezaRiko/
unexpected liaison les =z= haricots
Non-standard realization
                      [je sais pas, Sepa]
                                               /Sepa/
 . assimilation
  realization of final schwa (southern French)
                                               12 veR2
                      le [verre, veR2]
 [...]
```

TOE main instructions

Annotators were instructed to:

- Favor elision notation, e.g. p(e)tit NOT [petit, pti]
- " In case of doubt: orthographic transcription
- " Not to use spectrogram
- " Avoid attending to fine-grained detail (if possible...)

Structure of automatic processing

Ex1a Time aligned phonemes , orthographic tokens

Alignment evaluation

" 2 speakers (1 male, 1 female)

~13000 vowels corrected

v.end gap auto – manual (ms)

Vowel duration underestimated: 14 ms (median)

(auto – manual)	v. begin (ms)	v.end (ms)	midpoint(ms)
Median	9	0	3
auto – manual 3rd Quart.	20	23	16

Alignment evaluation

```
7 macro-classes of oral vowels:
```

```
A(A,a) e(E,e) o(O,o) @(2,9,@) i y u
```

- ^{*} 4378 "automatic" vowels [30,300] ms
 - 5367 "manual" vowels
- 3 formants estimated at the midpoint (ESPS, standard parameters)
- " F1, F2, F3: Manual vs Auto segmentation
 - . insignificant differences or < 0.2 Bark
 - . Formant value variability very similar

Difference limen discriminating formants = 0.28 Bark
(D. Kewley-Port, Y. Zheng 1999)

Truncated words

- ″ 1730 items
- 455 patterns
- " The 18 most frequent patterns (> 1%) = 50% of the items
- " /i/ /i/ /va/ /parle/:
 - 1) i- i- i(l) va parler
 - 2) i(l) i(l) i(l) va parler

Elision

~ 11000 elided phonemes (3.6 % of 302,000 phonemes)

187 patterns

The 10 patterns with frequency > 1% = 88% of the elided phonems

Non-standard phonetic realizations

```
" 2810 items , 1300 patterns
[je , S] :
                7.7 %
[je sais, Se]: 6 %
                              ~ 17 %
[je suis, SHi]: 2.9 %
[je suis, Sy]:
            0.9 %
% items
           #occurrence
                         (half = 520 items = final schwas)
37
5
1.6
~50 % [] could be automatically processed
        (Final schwas + 4 most freq. patterns)
```

LAUGHS

- " 2111 laughing sequences
- " 367 speech laughing sequences
- " 844 single laughing sequence (IPU without speech)

~ 16% of the 13000 alignable IPUs contain (at least) one laughing sequence

overlaps

4753 overlaps (ipu overlapping)

12.6% <= 150 ms (min value for overlapping ?)

6% <= 80 ms

63 % of the ~13000 IPUs are involved in an overlap (>150ms)

Conclusion

- 1) Enriched orthographic transcription
 - + simple pre- and post-processing
 - + standard speech processing tools
- → Some phonetic analyses (at vowel- or syllable-level) are possible on a "large " corpus of very uncontrolled conversational speech(*)
- 2) TOE may be simplified:

reducing human work transcription, depending more on the abilities of the automatic aligner.

e.g., for standard elisions & liaisons, final schwas (?)

- 3) Enhancement of the grapheme-to-phoneme process
- 4) Enhancement of the alignment tool (new acoustic models..)
- (*) Meunier C. & Espesser R. Vowel reduction in conversational speech in French: The role of lexical factors. Journal of Phonetics (2011) (in press, already published online)