

Dopamine studies ~ methodological variabilities

- On/Off-studies
 - Protocol:
 - PD or Parkinsonism?
 - · De novo/Levodopa treated
 - Stage-dependency
 - Capsit-protocol/variation in the duration of the off-episode
 - Instrumental/perceptual research
 - Perceptual research: experience of the rater!
 - Patient related variations
 - Variations in drug effect from cycle to cycle
 - Dosis Levodopa
 - Emotional aspects, fatigue, depression, arousal (Brown et al., 1982; Golfam et al., 1988)

Subcortical control of language

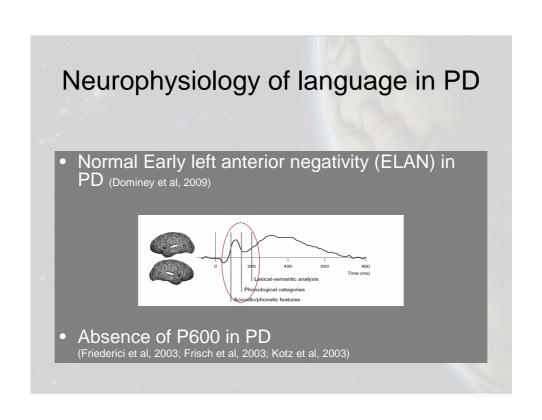
- Phonological processing: involvement of the <u>right</u> <u>nucleus caudatus</u> (Adullaev et al, 1997)
- Phonological failure in PD (Darkins et al, 1988)
- Improvement of phonology <u>after STN-stimulation</u> in PD (Zanini et al, 2003)
- ❖ The level of accuracy in phonological processing significantly correlated with tracer binding potential in the <u>left dorsal caudate nucleus</u> (Tettamanti et al, 2005)
- ❖ The speed in phonological processing significantly correlated with tracer binding potential in the <u>left</u> <u>dorsal putamen</u> (Tettamanti et al, 2005)
- ❖ A more accurate and fast phonological processing was associated with a <u>reduced dopamine requirement</u> in the left striatum (Tettamanti et al, 2005)

SEMANTICS

Subcortical control of language

- Functioning of the dopamine dependent frontal-striatalthalamic system influences the <u>speed</u> of semantic activation (Grossman et al., 2002)
- Dopamine exerts a neuromodulatory influence on the speed of semantic activation (Angwin et al., 2004)
- The nature of altered semantic activation in PD may depend on the <u>magnitude of dopamine depletion</u>.
- Changes to the speed of activation may also contribute to PD patients' poor performance on other tests of semantic processing such as verbal fluency
- Delayed semantic activation may only be evident in a subset of PD patients (Angwin et al., 2005; Grossman et al., 2002)
 + interindividual differences (Angwin et al., 2007)
- The profile of cognitive dysfunction in PD may be a function of a complex <u>relationship between the side of</u> <u>disease onset and the initial motor symptoms</u> (Katzen et al., 2006)

doi:10.1093/brain/awn112


Brain (2008), 131, 2094-2105

Parkinson's disease and dopaminergic therapy—differential effects on movement, reward and cognition

J. B. Rowe, ^{1,2,3} L. Hughes, ^{1,2} B. C. P. Ghosh, ¹ D. Eckstein, ^{1,2} C. H. Williams-Gray, ^{1,4} S. Fallon, ² R. A. Barker ^{1,4} and A. M. Owen^{2,3}

- Levodopa medication can enhance of restore striatal function
- Levodopa can impair frontal functions by overdosing mesocortical dopamine (Gotham et al., 1988; Cools et al., 2001, 2003)

Influence of Levodopa on auditory lexical decision? PD ON Normal subject PD OFF Mean time Fz 1) P177 P 164 P 162 (msec) 2) P162 Cz, Pz, P3, P4, C3, C4 topography 1) Fz, Cz, F3 Fz, Cz, Fpz 2) Fz, Cz, Fpz "more widely distributed brain activity" in OFF ~ fMRI (Farid et al, 2009)

Pilot study

Aim

- To investigate the influence of dopamine on language function (off/on-study)
- To verify the lateralization hypothesis (Katzen et al., 2006)

Methodology

Subjects

- PD-patients (Hoehn & Yahr OFF-stage: 2-4)
- N=7 (male/female)
- Age: 45-74 y (mean 62)
- Right-handed, native speakers, normal vision, no comorbid neurological problems than PD, normal mental state

Pilot study

Stimuli

- Silent reading task
- 60 Dutch verbs: 30 hand manipulation verbs (eg to sew, to point, ...) and 30 nonmanipulative verbs (to leave, to develop, ...)
- The word groups were matched with respect to mean word length, word form frequency, and imageability
- Stimuli presented for 1 second, in pseudo-random order

Procedure

- CAPSIT-protocol
- Subjects were instructed to reduce eye-blinks and movements as far as possible
- After the session : 5 minutes rest
- Retest

Data recording

- Electrophysiology (Neurosoft-system), electrically and acoustically shielded chamber
- Universal EEG Cap (Haube-S2)
- 24-channel EEG, electrodes 10/20 system

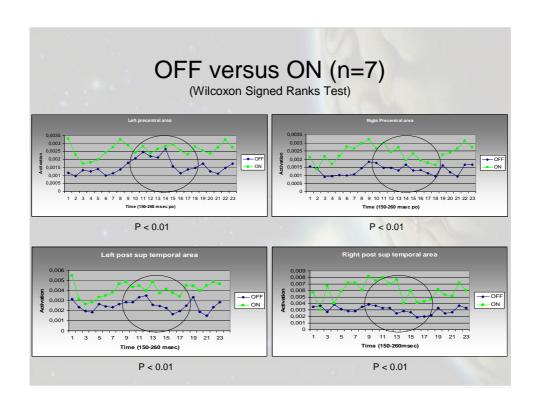
Pilot study Data analysis - EP – difference between manipulable – 5mµ - Loreta analysis on 4 different area's: - Left precentral gyrus (BA 4) (x=-58.4, y=-6, z=22) - Right precentral gyrus (BA 4) (x=63, y=-4, z= 22) - Left temporal gyrus (BA 22) (x=-61, y=-39, z= 22) - Right temporal gyrus (BA 22) (x=61, y=-40, z=22)

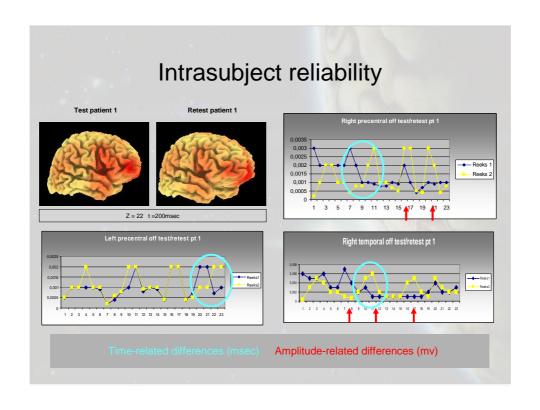
Pilot study

Data analysis

- Measurement in Loreta on the 4 neuroanatomic localizations, in OFF and ON, every 5msec between 150msec and 260msec.
- Mean group on the 8 conditions
- Off versus ON (Wilcoxon Signed Ranks Test)
- Fluctuations over time
- Intrasubject variability

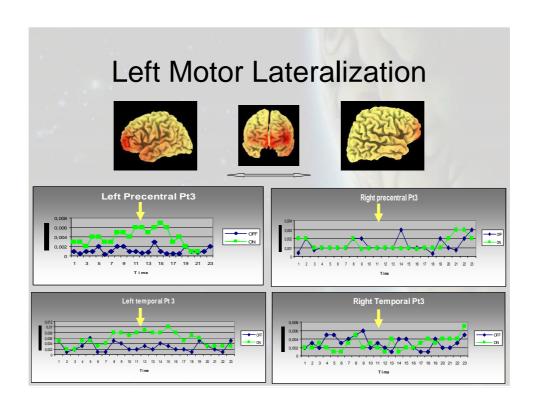
Previous study


Neurophysiological distinction of action words in the fronto-central cortex (Hauk et al., 2004)


- 12 Normal subjects
- ERP silent reading arm (hand)-related words
- Analysis 35 electrodes between 210-230 msec

Results

Arm (hand)-related words specifically activation right-frontal area's between 210-230 msec



Lateralization

- Unilateral symptoms are caused by reduced dopaminergic activity in the basal ganglia opposite to the side of symptoms (Agid, 1980; Schapira, 1999)
- No neurophysiological studies that took the lateralization of the cognitive functions in PD systematically into account

Conclusion

- A lot of variables influencing the results and interpretation of clinical and neurophysiological levodopa studies
- Levodopa changes the processing of differenciating between manipulative and nonmanipulative verbs
- Language function is dopamine dependent
- Lateralization effects!
- Overdosis dopamine can impair cortical functions

Further research required

